ℝ lemmas #
Reals are either ≤ 0 or ≥ 0
@[simp]
theorem
Set.Icc_mul_singleton
{𝕜 : Type}
[Field 𝕜]
[LinearOrder 𝕜]
[IsStrictOrderedRing 𝕜]
{a b x : 𝕜}
(x0 : 0 < x)
:
Multiplying an Icc by a positive number produces the expected Icc
theorem
image_mul_right_Icc_of_neg
{𝕜 : Type}
[Field 𝕜]
[LinearOrder 𝕜]
[IsStrictOrderedRing 𝕜]
{a b c : 𝕜}
(c0 : c < 0)
:
Negative c version of image_mul_right_Icc
@[simp]
A simple lemma that we use a lot
@[simp]
A simple lemma that we use a lot
@[simp]
Writing not_lt.mpr two_zpow_pos fails to infer inside simp, so we write this out
@[simp]
Writing not_lt.mpr two_zpow_pos.le fails to infer inside simp, so we write this out
@[simp]
theorem
range_mul_two_zpow_eq_univ
{𝕜 : Type}
[Field 𝕜]
[LinearOrder 𝕜]
[IsStrictOrderedRing 𝕜]
{n : ℤ}
:
The range of two power multiplication is univ
theorem
Set.inv_Icc₀
{𝕜 : Type}
[Field 𝕜]
[LinearOrder 𝕜]
[IsStrictOrderedRing 𝕜]
{a b : 𝕜}
(a0 : 0 < a)
(b0 : 0 < b)
:
Icc commutes with ⁻¹ if we're positive
@[simp]
theorem
sub_le_add_iff_left
{𝕜 : Type}
[Field 𝕜]
[LinearOrder 𝕜]
[IsStrictOrderedRing 𝕜]
(x y z : 𝕜)
:
x - y ≤ x + z ↔ -y ≤ z
@[simp]
theorem
add_le_sub_iff_left
{𝕜 : Type}
[Field 𝕜]
[LinearOrder 𝕜]
[IsStrictOrderedRing 𝕜]
(x y z : 𝕜)
:
x + y ≤ x - z ↔ y ≤ -z