Documentation

Interval.Misc.Array

Array lemmas #

@[simp]
theorem Array.getElem_map_fin {α β : Type} (f : αβ) (x : Array α) {n : } (i : Fin n) (h : i < (map f x).size) :
(map f x)[i] = f x[i]
theorem Array.getElem_eq_getElem! {α : Type} [Inhabited α] (d : Array α) {n : } (i : Fin n) (h : i < d.size) :
d[i] = d[i]!
@[simp]
theorem Fin.getElem_fin' {Cont Elem : Type} {Dom : ContProp} [GetElem Cont Elem Dom] (a : Cont) {n : } (i : Fin n) (h : Dom a i) :
a[i] = a[i]

ByteArray lemmas #

theorem ByteArray.getElemNat_eq_getElem! {d : ByteArray} {i : } (h : i < d.size) :
d[i] = d[i]!
theorem ByteArray.getElem!_push (d : ByteArray) (c : UInt8) (i : ) :
(d.push c)[i]! = if i < d.size then d[i]! else if i = d.size then c else default
theorem Array.getElem?_eq_toList_get?' {α : Type} (a : Array α) (i : ) :
theorem ByteArray.getElem!_append (d0 d1 : ByteArray) (i : ) :
(d0 ++ d1)[i]! = if i < d0.size then d0[i]! else d1[i - d0.size]!