Partial derivatives commute #
theorem
fderiv_fderiv_comm
{E : Type}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{G : Type}
[NormedAddCommGroup G]
[NormedSpace ℝ G]
{f : E × F → G}
{z : E × F}
{dx : E}
{dy : F}
(sf : ContDiff ℝ 2 f)
:
theorem
ContDiff.iteratedDeriv_right
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{f : 𝕜 → E}
{m : WithTop ℕ∞}
{n : ℕ∞}
{i : ℕ}
(hf : ContDiff 𝕜 (↑n) f)
(hmn : m + ↑i ≤ ↑n)
:
ContDiff 𝕜 m (_root_.iteratedDeriv i f)
theorem
ContDiff.deriv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{f : E → 𝕜 → F}
{g : E → 𝕜}
{m : WithTop ℕ∞}
(fc : ContDiff 𝕜 ⊤ (Function.uncurry f))
(gc : ContDiff 𝕜 ⊤ g)
:
ContDiff 𝕜 m fun (z : E) => _root_.deriv (fun (y : 𝕜) => f z y) (g z)
theorem
ContDiff.iteratedDeriv
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{f : E → 𝕜 → F}
{g : E → 𝕜}
{m : WithTop ℕ∞}
{n : ℕ}
(fc : ContDiff 𝕜 ⊤ (Function.uncurry f))
(gc : ContDiff 𝕜 ⊤ g)
:
ContDiff 𝕜 m fun (z : E) => _root_.iteratedDeriv n (fun (y : 𝕜) => f z y) (g z)