The Stirling series for the gamma function #
Derivatives of y ↦ log (x + y) #
Rising log factorials and logGammaSeq #
Approximating log_rising and gamma via Euler-Maclaurin #
theorem
tendsto_sum
{x : ℝ}
{s : ℕ}
(x0 : 0 ≤ x)
:
Filter.Tendsto (fun (n : ℕ) => sum (x + ↑n) s) Filter.atTop (nhds 0)
theorem
integrableOn_bound
{c x : ℝ}
{s : ℕ}
(x0 : 0 < x)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => c * (x + t) ^ (-↑s - 2)) (Set.Ioi 0) MeasureTheory.volume
theorem
integrableOn_bound'
{c x : ℝ}
{s : ℕ}
(x0 : 0 < x)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => c / (x + t) ^ (s + 2)) (Set.Ioi 0) MeasureTheory.volume
theorem
tendsto_rem
{x : ℝ}
{s : ℕ}
(x0 : 0 < x)
:
Filter.Tendsto (fun (n : ℕ) => rem_n x n s) Filter.atTop (nhds (rem x s))
theorem
tendsto_const
{s : ℕ}
:
Filter.Tendsto (fun (n : ℕ) => const_n n s) Filter.atTop (nhds (const s))
Delegate the constant to Stirling's formula #
theorem
MeasureTheory.norm_set_integral_le_of_norm_le
{α : Type u_1}
{G : Type u_2}
[NormedAddCommGroup G]
[NormedSpace ℝ G]
{m : MeasurableSpace α}
{μ : Measure α}
{f : α → G}
{g : α → ℝ}
{s : Set α}
(hg : IntegrableOn g s μ)
(h : ∀ᵐ (x : α) ∂μ.restrict s, ‖f x‖ ≤ g x)
: